Elliptic Curve Cryptography Problem #1
Given Cryptosystem Parameters:
· E11 (1, 6)
· G = (2, 7)
· B’s Secret Key: nB = 7
To Find:
1. B’s Public Key: PB
2. Given message Pm = (10, 9) and random value k = 3. Determine Cm
3. Find Pm form Cm
Solution:
· PB = nB * G = 7 (2, 7) = 2 (2 (2, 7) + (2, 7) ) + (2, 7)
2 (2,7)
λ = (3xP2 + a) / (2yP) mod p
λ = (3*22 + 1) / (2*7) mod 11
= (13 mod 11/14 mod 11) mod 11 = (2/3) mod 11 = (2*3-1) mod 11 = (2 * 4) mod 11
= 8 mod 11
λ = 8
xR = (λ2 - xP - xQ) mod p
= (82 – 2 - 2) mod 11 = (64-2-2) mod 11 = 60 mod 11 = 5
yR = (λ (xP - xR) -yP) mod p
= (8 (2-5) – 7) mod 11 = (8 (-3) – 7) mod 11 = -31 mod 11 = 2
2 (2, 7) = (5, 2)
3 (2,7) = 2 (2, 7) + (2, 7) = (5, 2) + (2, 7)
λ = (yQ – yP) / (xQ – xP) mod p
λ = (7-2) / (2-5) mod 11 = (5/-3) mod 11 = (-5 * 3-1) mod 11= (-5*4) mod 11
= -20 mod 11 = 2
λ = 2
xR = (λ2 - xP - xQ) mod p
= (22-5-2) mod 11 = (4-5-2) mod 11 = (4-7) mod 11 = -3 mod 11 = 8
yR = (λ (xP - xR) -yP) mod p
= (2(5-8)-2) mod 11 = (2(-3)-2) mod 11 = (-6-2) mod 11 = -8 mod 11 = 3
3 (2, 7) = (8, 3)
6 (2, 7) = 2 (2 (2, 7) + (2, 7) ) = 2 (8, 3)
λ = (3xP2 + a) / (2yP) mod p
λ = (3*82) +1) / (2*3) mod 11 = ((192 mod 11 + 1) / 6) mod 11 = ((5+1) / 6) mod 11 = 1
λ = 1
xR = (λ2 - xP - xQ) mod p
= (12-8-8) mod 11 = -15 mod 11 = 7
yR = (λ (xP - xR) -yP) mod p
= (1(8-7) -3) mod 11 = (1-3) mod 11 = -2 mod 11 = 9
6 (2, 7) = (7, 9)
7 (2, 7) = 6 (2, 7) + (2, 7) = (7, 9) + (2, 7)
λ = (yQ – yP) / (xQ – xP) mod p
λ = (7-9) / (2-7) mod 11 = (-2/-5) mod 11 = (2*5-1) mod 11 = (2*9) mod 11 = 18 mod 11
λ = 7
xR = (λ2 - xP - xQ) mod p
= (72-7-2) mod 11 = (49-7-2) mod 11 = 40 mod 11 = 7
yR = (λ (xP - xR) -yP) mod p
= (7(7-7) – 9) mod 11 = -9 mod 11 = 2
7 (2, 7) = (7, 2)
PB = (7, 2)
· Cm = {kG, Pm+kPB}
kG = 3 (2, 7)
= (8, 3) [See Previous Calculations]
kPB = 3 (7, 2) = 2(7, 2) + (7, 2)
2 (7, 2)
λ = (3xP2 + a) / (2yP) mod p
λ = (3*72+1) / (2*2) mod 11 = (148/4) mod 11 = 37 mod 11 = 4
λ = 4
xR = (λ2 - xP - xQ) mod p
= (42 – 7 – 7) mod 11 = (16-14) mod 11 = 2
yR = (λ (xP - xR) -yP) mod p
= (4 (7-2) -2) mod 11 = (4(5) – 2) mod 11 = 18 mod 11 = 7
2 (7, 2) = (2, 7)
3(7, 2) = 2(7,2) + (7, 2) = (2, 7) + (7, 2)
λ = (yQ – yP) / (xQ – xP) mod p
λ = (2 – 7) / (7 – 2) mod 11 = (-5 / 5) mod 11 = -1 mod 11 = 10
λ = 10
xR = (λ2 - xP - xQ) mod p
= (102 – 2 - 7) mod 11 = 91 mod 11 = 3
yR = (λ (xP - xR) -yP) mod p
= (10 (2-3)) – 7) mod 11 = (-10-7) mod 11 = -17 mod 11 = 5
3(7, 2) = (3, 5)
kPB = (3, 5)
Pm + kPB = (10, 9) + (3, 5)
λ = (yQ – yP) / (xQ – xP) mod p
λ = (5-9) / (3-10) mod 11 = (-4 / -7) mod 11 = 4*7-1 mod 11 = (4*8) mod 11 = 10
λ = 10
xR = (λ2 - xP - xQ) mod p
= (102 – 10 -3) mod 11 = 87 mod 11 = 10
yR = (λ (xP - xR) -yP) mod p
= (10 (10-10) – 9) mod 11 = -9 mod 11 = 2
Pm + kPB = (10, 2)
Cm = {kG, Pm+kPB} = {(8, 3), (10, 2)}
· Recovering Plaintext Pm
Pm = (Pm + kPB) - (nB * kG)
= (10, 2) – 7 (8, 3)
7 (8, 3) = 2 (2(8, 3) + (8, 3)) + (8, 3)
2 (8, 3) = (7, 9) [See Previous calculations]
(7, 9) + (8, 3)
λ = (yQ – yP) / (xQ – xP) mod p
λ = (3-9) / (8-7) mod 11 = -6 mod 11 = 5
λ = 5
xR = (λ2 - xP - xQ) mod p
= (52 – 7 -8) mod 11 = 10 mod 11 = 10
yR = (λ (xP - xR) -yP) mod p
= (5(7-10) – 9) mod 11 = (-15-9) mod 11 = -24 mod 11 = 9
3(8, 3) = (10, 9)
6(8, 3) = 2(10, 9)
λ = (3xP2 + a) / (2yP) mod p
λ = (3*102 + 1) / (2*9) mod 11 = 301 mod 11 / 18 mod 11 = 4 * 7-1 mod 11
= (4 * 8) mod 11 = 32 mod 11 = 10
λ = 10
xR = (λ2 - xP - xQ) mod p
= (102 – 10 -10) mod 11 = 80 mod 11 = 3
yR = (λ (xP - xR) -yP) mod p
= (10(10-3) -9) mod 11 = 61 mod 11 = 6
6(8, 3) = 2(10, 9) = (3, 6)
7(8, 3) = (3, 6) + (8, 3)
λ = (yQ – yP) / (xQ – xP) mod p
λ = (3-6) / (8-3) mod 11 = - 3*5-1 mod 11 = (-3*9) mod 11 = -27 mod 11 = 6
λ = 6
xR = (λ2 - xP - xQ) mod p
= (36-3-8) mod 11 = 25 mod 11 =3
yR = (λ (xP - xR) -yP) mod p
= (6(3-3) – 6) mod 11 = -6 mod 11 = 5
7(8, 3) = (3, 5)
Pm = (10, 2) – 7(8, 3) = (10, 2) – (3, 5) = (10, 2) + (3, -5)
(10, 2) + (3, -5)
λ = (yQ – yP) / (xQ – xP) mod p
λ = (-5-2) / (3-10) mod 11 = (-7 / -7) mod 11 = 1
λ = 1
xR = (λ2 - xP - xQ) mod p
= (1-10-3) mod 11 = -12 mod 11 = 10
yR = (λ (xP - xR) -yP) mod p
= (1(10-10) -2) mod 11 = -2 mod 11 = 9
Pm = (10, 9)